Das Aktionspotential einer Herzmuskelzelle wird durch Ionenströme bewirkt. Im Ruhezustand beträgt das Membranpotential aufgrund des Kaliumausstroms etwa -80 bis -90 mV. Steigt es durch einen ausreichenden elektrischen Reiz auf über -75 mV an, so öffnen sich spannungsabhängige Natriumkanäle. Entlang dem Konzentrationsgradienten von Na+ strömt nun sehr schnell Na+ in die Zelle ein und das Membranpotential steigt auf etwa +20 mV an (Depolarisation).
An diesem Punkt schließen sich nach ca. 2 ms die Natriumkanäle wieder. Durch die Depolarisation öffnen sich jedoch auch Calciumkanäle, die sich erst verzögert wieder schließen. Der Ca2+-Einstrom hält daher noch an. Er steht im Gleichgewicht mit einem K+-Ausstrom, so dass das Membranpotential eine Zeitlang auf einem Plateau (ca. +10 mV) bleibt.
Für die Repolarisation ist vor allem der sogenannte "delayed rectifier" verantwortlich. Es handelt sich hier um einen K+-Kanal, der sich bei Depolarisation öffnet, aber nur verzögert ("delayed"). Durch den nun ermöglichten K+-Ausstrom sinkt das Membranpotential wieder auf den Ruhewert von -80 bis -90 mV ab.
Während alle anderen bekannten β-Adrenozeptorantagonisten Klasse-II-Antiarrhythmika darstellen, handelt es sich bei dem β-Adrenozeptorantagonisten Sotalol um ein Klasse-III-Antiarrhythmikum. Im Vordergrund des therapeutischen Einsatzes steht vor allem die antiarrhythmische Wirkkomponente.
Klasse-III-Antiarrhythmika, zu denen neben Sotalol auch das Amiodaron zählt, blockieren am Herzen Kaliumkanäle. Wird der Kaliumausstrom gehemmt, verstreicht mehr Zeit, bis sich die Zelle, die ein Aktionspotential durchläuft, repolarisiert hat. Es kommt also zu einer Verlängerung des Aktionspotentials, was man im EKG an der verlängerten QT-Zeit erkennen kann. Gefährliche kreisende Erregungen lassen sich damit stoppen.
Weiterhin verfügt Sotalol, wie angesprochen, über die pharmakologischen Eigenschaften eines β-Adrenozeptorantagonisten:
β-Adrenozeptorantagonisten, die strukturell den Catecholaminen ähneln, antagonisieren kompetetiv die Noradrenalin-Wirkung an β1-Rezeptoren sowie die Adrenalin-Wirkung an β1- und β2-Rezeptoren. Unklar ist die Rolle der β3-Rezeptoren. Für den Einsatz der β-Adrenozeptorantagonisten stellen besonders die am Herzen exprimierten β1- und β2-Rezeptoren die Grundlage des pharmakolgischen Einsatzes dar, wobei dort etwa 70 % der β-Rezeptoren als β1 und 30 % als β2 vorliegen.
Um die Wirksamkeit der Rezeptorantagonisten nachvollziehen zu können, muss die Frage beantwortet werden, welche Wirkungen die endogenen Agonisten auf β1- und β2-Rezeptoren am Herzen besitzen: Durch die Noradrenalin- oder Adrenalin-vermittelte Aktivierung von β-Adrenozeptoren, die G-Protein-gekoppelte Rezeptoren darstellen, kommt es zur Aktivierung einer Proteinkinase A, welche aus dem sarkoplasmatischen Reticulum Calcium freisetzt, das die Kontraktilität des Herzens erhöht (positive Inotropie). Außerdem wird eine Adenylylcylase aktiviert, was den cAMP-Spiegel steigert, der dann über Schrittmacherkanäle die Herzfrequenz steigert (positive Chronotropie). Somit steuert der Sympathikus Pulsfrequenz und Schlagkraft des Herzens mit Noradrenalin über β1-Rezeptoren. Da Adrenalin auch zu β2-Rezeptoren Affinität besitzt, greift es regulierend über beide Rezeptortypen ein. Eine dauerhafte (Über-)Erregung der β-Rezeptoren kann ungünstige Effekte nach sich ziehen, z. B. die Auslösung von Apoptose, das heißt die Einleitung des programmierten Zelltodes an Herzzellen, oder auch die Fibrosierung des Myokards, d. h. die bindegewebsartige Umgestaltung mit nichtkontraktilem Gewebe.